

Form C: Type Test Verification Report

Type Approval and **Manufacturer** declaration of compliance with the requirements of G98.

This form should be used when making a Type Test submission to the Energy Networks Association (ENA).

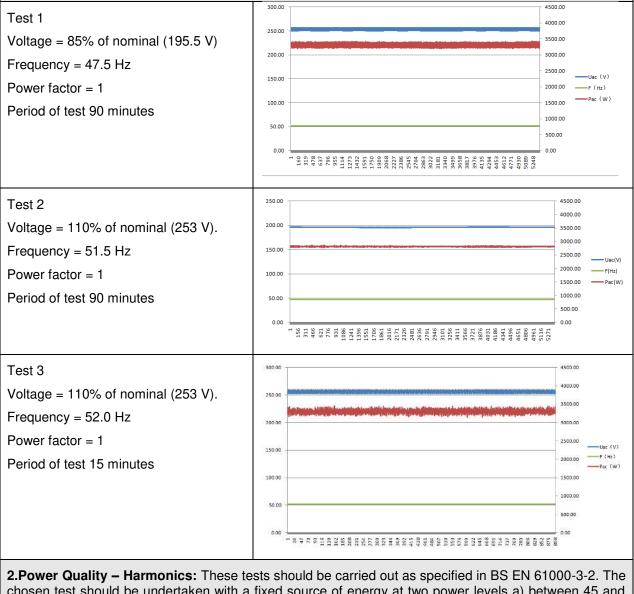
If the **Micro-generator** is **Fully Type Tested** and already registered with the ENA **Type Test Verification Report** Register, the **Installation Document** should include the **Manufacturer**'s Reference Number (the Product ID), and this form does not need to be submitted.

Where the **Micro-generator** is not registered with the ENA **Type Test Verification Report** Register this form needs to be completed and provided to the **DNO**, to confirm that the **Micro-generator** has been tested to satisfy the requirements of this EREC G98.

er's referen	ce number	Growatt MIC 3300TL-X 2020						
Micro-generator technology			Growatt MIC 750TL-X, Growatt MIC 1000TL-X, Growatt MIC 1500TL-X, Growatt MIC 2000TL-X, Growatt MIC 2500TL-X, Growatt MIC 3000TL-X, Growatt MIC 3300TL-X					
Manufacturer name			ew Energy Tech	nology Co., Ltd.				
Address			1st East & 3rd Floor of Building A,Building B,Jiayu Industrial Park,#28,GuangHui Road,LongTeng Community,Shiyan Street, Baoan District,Shenzhen,P.R.China					
+86 755 295	51 5888		Fax	+86 755 2951 5888				
Peng.zhu@	growatt.com		Web site	www.ginverter.com				
Connection			Option					
Capacity , e sheet if	0.75-3.3	kW single phase, single, split or three phase system						
ne ption.	N/A	kW three phase						
	N/A	kW two phases in three phase system						
	N/A	kW two phases split phase system						
I reference nt, prior to	number will be	manufactur	ed and tested to	upplied by the company with the above o ensure that they perform as stated in ations are required to ensure that the				
Rng Zhu On behalf of Growatt New Energy Technolog Co., Ltd.								
Jen Sting can	۹ be	g 2hu be done by the	g Zhu	9 2 hu be done by the Manufacturer of an individ				

Where parts of the testing are carried out by persons or organisations other than the Manufacturer then that person or organisation shall keep copies of all test records and results supplied to them to verify that the testing has been carried out by people with sufficient technical competency to carry out the tests.

1.Operating Range: This test should be carried out as specified in EN 50438 D.3.1.


Active Power shall be recorded every second. The tests will verify that the Micro-generator can operate within the required ranges for the specified period of time.

The Interface Protection shall be disabled during the tests.

In case of a PV Micro-generator the PV primary source may be replaced by a DC source.

In case of a full converter Micro-generator (eg wind) the primary source and the prime mover **Inverter**/rectifier may be replaced by a **DC** source.

In case of a DFIG Micro-generator the mechanical drive system may be replaced by a test bench motor.

chosen test should be undertaken with a fixed source of energy at two power levels a) between 45 and 55% and b) at 100% of Registered Capacity. The test requirements are specified in Annex A1 A.1.3.1

(Inverter connected) or Annex A2 A.2.3.1 (Synchronous).										
Micro-ger	erator tested to BS	EN 6100	0-3-2							
Micro-g	enerator rating per (rpp)	phase	3.3	kW						
Harmonic	At 45-55% of Rec Capacity		100% of Re ç Capac							
	Measured Value MV in Amps	Norma lised Value (NV) in Amps	Measured Value MV in Amps	Normali sed Value (NV) in Amps	Limit in BS EN 61000- 3-2 in Amps	Higher limit for odd harmonics 21 and above				
2	0.065	0.080	0.11	0.135	1.080					
3	0.187	0.229	0.21	0.258	2.300					
4	0.027	0.033	0.04	0.049	0.430					
5	0.113	0.139	0.131	0.161	1.140					
6	0.019	0.023	0.029	0.036	0.300					
7	0.069	0.085	0.079	0.097	0.770					
8	0.007	0.009	0.009	0.011	0.230					
9	0.045	0.055	0.059	0.072	0.400					
10	0.005	0.006	0.019	0.023	0.184					
11	0.027	0.033	0.049	0.060	0.330					
12	0.007	0.009	0.009	0.011	0.153					
13	0.007	0.009	0.051	0.063	0.210					
14	0.007	0.009	0.021	0.026	0.131					
15	0.008	0.010	0.031	0.038	0.150					
16	0.008	0.010	0.021	0.026	0.115					
17	0.017	0.021	0.049	0.060	0.132					
18	0.007	0.009	0.019	0.023	0.102					
19	0.027	0.033	0.049	0.060	0.118					
20	0.007	0.009	0.019	0.023	0.092					

ENA Engineering Recommendation G98 Issue 1 Amendment 4 2019

21	0.037	0.045	0.069	0.085	0.107	0.160
22	0.017	0.021	0.019	0.023	0.084	
23	0.027	0.033	0.059	0.072	0.098	0.147
24	0.007	0.009	0.029	0.036	0.077	
25	0.037	0.045	0.059	0.072	0.090	0.135
26	0.007	0.009	0.009	0.011	0.071	
27	0.027	0.033	0.037	0.045	0.083	0.124
28	0.007	0.009	0.007	0.009	0.066	
29	0.038	0.047	0.049	0.060	0.078	0.117
30	0.008	0.010	0.009	0.011	0.061	
31	0.018	0.022	0.029	0.036	0.073	0.109
32	0.007	0.009	0.017	0.021	0.058	
33	0.017	0.021	0.027	0.033	0.068	0.102
34	0.007	0.009	0.019	0.023	0.054	
35	0.017	0.021	0.029	0.036	0.064	0.096
36	0.007	0.009	0.009	0.011	0.051	
37	0.007	0.009	0.019	0.023	0.061	0.091
38	0.007	0.009	0.009	0.011	0.048	
39	0.007	0.009	0.019	0.023	0.058	0.087
40	0.008	0.010	0.011	0.013	0.046	

Note the higher limits for odd harmonics 21 and above are only allowable under certain conditions, if these higher limits are utilised please state the exemption used as detailed in part 6.2.3.4 of BS EN 61000-3-2 in the box below.

3.Power Qua with EREC G	ality – Vo 98 Annex	Itage flu A1 A.1.3	ctuatic	ons	and Flig	cker: The	ese tes Annex	ts s A2 /	hould be	e underta Synchror	ken in accordance nous).
	Starting				Stoppin	g			Runnii	ng	
	d max	dc	d(t)		d max	d c	d(t)		P _{st}		P _{it} 2 hours
Measured Values at test impedance	1.08	0.03	0		1.08	0.25	0		0.21		0.15
Normalised to standard impedance	1.08	0.03	0		1.08	0.25	0		0.21		0.15
Normalised to required maximum impedance											
Limits set under BS EN 61000- 3-11	4%	3.3%	3.3%)	4%	3.3%	3.3%		1.0		0.65
Test Impedance	R	0.4		Ω		х		0.	25	Ω	
Standard Impedance	R	0.4		Ω		х		0.	25	Ω	
Maximum Impedance	R	-		Ω		х		-		Ω	

Applies to three phase and split single phase **Micro-generators**.

^ Applies to single phase **Micro-generators** and **Micro-generators** using two phases on a three phase system.

For voltage change and flicker measurements the following formula is to be used to convert the measured values to the normalised values where the power factor of the generation output is 0.98 or

above.

Normalised value = Measured value*reference source resistance/measured source resistance at test point.

Single phase units reference source resistance is 0.4 Ω

Two phase units in a three phase system reference source resistance is 0.4 $\boldsymbol{\Omega}.$

Two phase units in a split phase system reference source resistance is 0.24 Ω .

Three phase units reference source resistance is 0.24 Ω .

Where the power factor of the output is under 0.98 then the X to R ratio of the test impedance should be close to that of the Standard Impedance.

The stopping test should be a trip from full load operation.

The duration of these tests need to conform to the particular requirements set out in the testing notes for the technology under test. Dates and location of the test need to be noted below.

Test start date 1		12, Jl	JNE,2020	Test end date	12, JUNE,2020				
Test location		Grow	Growatt R&D Test Lab						
4.Power qualit D.3.10	y – DC	injecti	i on: This test sho	ould be carried out	t in accordance with EN 50438 Annex				
Test power level(3.3K)	20%		50%	75%	100%				
Recorded value in Amps	20.5 m/	٩	20.1 mA	20.8mA	20.7mA				

as % of rated AC current	0.14%	0.14%	0.114%	0.14%
Limit	0.25%	0.25%	0.25%	0.25%
Test power level(3K)	20%	50%	75%	100%
Recorded value in Amps	15.5 mA	13.1 mA	14.8mA	15.7mA
as % of rated AC current	0.12%	0.1%	0.11%	0.12%

Limit	0.25%	0.25%	0.25%	0.25%
Test power level (2.5K)	20%	50%	75%	100%
Recorded value in Amps	12.8 mA	11.5mA	13.1mA	12.6mA
as % of rated AC current	0.11%	0.1%	0.12%	0.11%
Limit	0.25%	0.25%	0.25%	0.25%
Test power level (2K)	20%	50%	75%	100%
Recorded value in Amps	12.1 mA	12.5 mA	11.1mA	12.4mA
as % of rated AC current	0.13%	0.12%	0.11%	0.14%
Limit	0.25%	0.25%	0.25%	0.25%
Test power level (1.5K)	20%	50%	75%	100%
Recorded value in Amps	11.2mA	11.5 mA	11.3mA	12.1mA
as % of rated AC current	0.17%	0.17%	0.17%	0.18%
Limit	0.25%	0.25%	0.25%	0.25%
Test power level (1K)	20%	50%	75%	100%
Recorded value in Amps	7.5mA	7.8mA	7.5mA	8.1mA
as % of rated	0.17%	0.17%	0.17%	0.18%

AC current					
Limit	0.25%	,	0.25%	0.25%	0.25%
Test power level (0.75K)	20%		50%	75%	100%
Recorded value in Amps	6.3 m	A	6.7 mA	6.31mA	6.5 mA
as % of rated AC current	0.19%	6	0.21%	0.19%	0.20%
Limit	0.25%	,	0.25%	0.25%	0.25%
	h [°] nomir				out in accordance with EN 50548 Annex be maintained within $\pm 1.5\%$ of the stated
		216.2	V	230 V	253 V
20% of Regi Capacity	stered	0.99182		0.99038	0.98096
50% of Regi Capacity	stered	0.9984	45	0.99799	0.99777
75% of Registered 0.999 Capacity		0.999	13	0.99924	0.99861
100% of Regi Capacity	00% of Registered 0.9993 apacity		32	0.99929	0.99928
Limit				>0.95	>0.95

6.Protection - Frequency tests: These tests should be carried out in accordance with EN 50438 Annex D.2.4 and the notes in EREC G98 Annex A1 A.1.2.3 (Inverter connected) or Annex A2 A.2.2.3 (Synchronous)

Function	Setting		Trip test		"No trip tests"		
	Frequency	Time delay	Frequency	Time delay	Frequency /time	Confirm no trip	
U/F stage	47.5 Hz	20 s	47.51Hz	20.04s	47.7 Hz 30 s	No Trip	

1						
U/F stage 2	47 Hz	0.5 s	47.01Hz	0.52s	47.2 Hz 19.5 s	No Trip
					46.8 Hz 0.45 s	No Trip
O/F stage 1	52 Hz	0.5 s	52.0Hz	0.988s	51.8 Hz 120.0 s	No Trip
					52.2 Hz 0.45 s	No Trip

Note. For frequency trip tests the frequency required to trip is the setting \pm 0.1 Hz. In order to measure the time delay a larger deviation than the minimum required to operate the projection can be used. The "No trip tests" need to be carried out at the setting \pm 0.2 Hz and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

7.Protection – Voltage tests: These tests should be carried out in accordance with EN 50438 Annex D.2.3 and the notes in EREC G98 Annex A1 A.1.2.2 (**Inverter** connected) or Annex A2 A.2.2.2 (Synchronous)

Function	Setting		Trip test		"No trip tests"		
	Voltage	Time delay	Voltage	Time delay	Voltage /time	Confirm no trip	
U/V	184 V	2.5 s	184.5V	2.655s	188 V 5.0 s	No Trip	
					180 V 2.45 s	No Trip	
O/V stage 1	262.2 V	1.0 s	262.78V	1.052s	258.2 V 5.0 s	No Trip	
O/V stage 2	273.7 V	0.5 s	274V	0.574s	269.7 V 0.95 s	No Trip	
					277.7 V 0.45 s	No Trip	

Note for Voltage tests the Voltage required to trip is the setting ± 3.45 V. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting ± 4 V and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

8.Protection – Loss of Mains test: For PV Inverters shall be tested in accordance with BS EN 62116. Other Inverters should be tested in accordance with EN 50438 Annex D.2.5 at 10%, 55% and 100% of rated power.

To be carried out at three output power levels with a tolerance of plus or minus 5% in Test Power levels.

Test Power	10%	55%	100%	10%	55%	100%

ENA Engineering Recommendation G98 Issue 1 Amendment 4 2019

Balancing load on islanded network	95% of Registered Capacity	95% of Registered Capacity	95% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity
Trip time. Limit is 0.5 s	0.29s	0.34s	0.31s	0.32s	0.31s	0.30s
For Multi phase N single fuse as wel			at the device s	huts down co	rrectly after the	e removal of a
Test Power	10%	55%	100%	10%	55%	100%
Balancing load on islanded network	95% of Registered Capacity	95% of Registered Capacity	95% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity
Trip time. Ph1 fuse removed	/	/	/	/	/	/
Test Power	10%	55%	100%	10%	55%	100%
Balancing load on islanded network	95% of Registered Capacity	95% of Registered Capacity	95% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity
Trip time. Ph2 fuse removed	/	/	/	/	/	/
Test Power	10%	55%	100%	10%	55%	100%
Balancing load on islanded network	95% of Registered Capacity	95% of Registered Capacity	95% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity
Trip time. Ph3 fuse removed	/	/	1	/	/	/
Note for technolo establishing that t 1.0 s for these tec	he trip occurre					
Indicate additional	l shut down tim	e included in a	bove results.			0.3s
For Inverters test table.	ed to BS EN 6	62116 the follo	wing sub set o	of tests should	be recorded i	n the following
Test Power and	33%	66%	100%	33%	66%	100%
imbalance	-5% Q	-5% Q	-5% P	+5% Q	+5% Q +5% Q	
	Test 22	Test 12	Test 5	Test 31	Test 21	Test 10

Trip time. Limit 0.31s is 0.5 s	0.31s	0.30s		0.34s		0.29s	0.29s		
9.Protection – Frequency change, Vector Shift Stability test: This test should be carried out in accordance with EREC G98 Annex A1 A.1.2.6 (Inverter connected) or Annex A2 A.2.2.6 (Synchronous).									
	Start Frequency	Change		Co	Confirm no trip				
Positive Vector Shift	49.0 Hz	+50 degrees		No Trip					
Negative Vector Shift	50.0 Hz	- 50 degrees		No Trip					
10.Protection – Frequend 11.3, test procedure in Ann									
Ramp range	Test frequency rar	np: Test Du		uration Confirm no trip					
49.0 Hz to 51.0 Hz	+0.95 Hzs ⁻¹		2.1 s		No Trip				
51.0 Hz to 49.0 Hz	-0.95 Hzs ⁻¹		2.1 s		No ⁻	No Trip			
11.Limited Frequency Sensitive Mode – Overfrequency test: This test should be carried out in accordance with EN 50438 Annex D.3.3 Power response to over- frequency. The test should be carried out using the specific threshold frequency of 50.4 Hz and Droop of 10%.									
Test sequence at Registered Capacity >80%	Measured Active Power Output	Frequency		Primary Power Source		er Source	Active Power Gradient		
Step a) 50.00 Hz ±0.01 Hz	3301.32W	50.002Hz		3376	3376.03W		-		
Step b) 50.45 Hz ±0.05 Hz	3268.71W	50.4	51Hz				-		
Step c) 50.70 Hz ±0.10 Hz	3101.73W	50.7	Ήz				-		
Step d) 51.15 Hz ±0.05 Hz	2800.85W	51.1	52Hz				-		
Step e) 50.70 Hz ±0.10 Hz	3099.35W	50.7	01Hz				-		
Step f) 50.45 Hz ±0.05 Hz	3267.43W	50.4	51Hz				-		
Step g) 50.00 Hz ±0.01 Hz	3302.59W	50.0	01Hz						
Test sequence at Registered Capacity 40% - 60%	Measured Active Power Output	Frequency		Primary Power Source		er Source	Active Power Gradient		
Step a) 50.00 Hz ±0.01 Hz	1652.12W	50H	Z	1703.37W			-		
Step b) 50.45 Hz ±0.05 Hz	1636.7W	50.4	51Hz				-		
Step c) 50.70 Hz ±0.10 Hz	1555.13W	50.7	01Hz				-		

Step d) 51.15 Hz ±0.05 Hz 14			404.2W		51.151Hz					-
Step e) 50.70 Hz ±0.10 Hz		155	554.38W		50.701Hz					-
Step f) 50.45 Hz ±0.05 Hz 16			637.41W		50.45Hz					-
Step g) 50.00 Hz ±0.01 Hz 16			655.13W		50Hz					
Steps as defined in EN 50438										
	output with fall ex D.3.2 active p						d be ca	arried	out in acc	ordance with EN
Test sequence			Measured Active Power Output		Frequency		Primary power source			
Test a) 50 Hz ± 0.01 Hz			3332.02 W			49.999 Hz		3353.08 W		
Test b) Point between 49.5 Hz and 49.6 Hz			3328.58 W			49.551 Hz		3360.83 W		
Test c) Point between 47.5 Hz and 47.6 Hz			3198.21 W			47.552 Hz		3250.49 W		
NOTE: The operating point in Test (b) and (c) shall be maintained for at least 5 minutes										
13.Re-connection timer.										
Test should prove that the reconnection sequence starts after a minimum delay of 20 s for restoration of voltage and frequency to within the stage 1 settings of Table 2.										for restoration of
Time delay setting	Measured delay		Checks on no reconnection when voltage or frequency is bro just outside stage 1 limits of table 2.						ency is brought to	
20s	20s		At 266.2	266.2 V At 180).0V At 47.4 H		7.4 Hz	2	At 52.1 Hz
Confirmation that the Micro generator does not re-connect.			Yes Ye		Yes	Yes				Yes
14.Fault level contribution : These tests shall be carried out in accordance with EREC G98 Annex A1 A.1.3.5 (Inverter connected) and Annex A2 A.2.3.4 (Synchronous).										
For machine			For Inverter output							
Parameter			Symbol	Va	llue	Time fault	after	Volts	i	Amps
Peak Short Circuit current			i _p	/		20 ms		81.2	V	29.3A
Initial Value of aperiodic current			A	/		100 ms		77.3V		22.5A
Initial symmetrical short-circuit			I _k	/		250 ms		76.9		16.1A

current*								
Decaying (aperiodic) component of short circuit current*	İ _{DC}	/	500 ms	73.5V	8.6A			
Reactance/Resistance Ratio of source*	×/ _R	/	Time to trip	0.11	In seconds			
For rotating machines and linear circuit current as seen at the Mic				duce a 0 s -	- 2 s plot of the short			
* Values for these parameters sh enable interpolation of the plot	nould be p	orovided	where the short cir	cuit duration	is sufficiently long to			
15.Logic Interface.					Yes			
This equipment is equipped with RJ45 terminal for logic interface that being received the signal from the DNO, the connection should be installed per installation manual, and the signal should be a simple binary output that captured by RJ45 terminal(PIN 5 and 1 for detecting the signal). Once the signal actived, the inverter will reduce its active power to zero within 5s.								
16.Self-Monitoring solid state switching: No specified test requirements. Refer to Yes/or NA EREC G98 Annex A1 A.1.3.6 (Inverter connected).								
It has been verified that in the event of the solid state switching device failing to disconnect the Micro-generator , the voltage on the output side of the switching device is reduced to a value below 50 V within 0.5 s.								
Additional comments								